Product Description

1. Company introduction 

HangZhou King Slewing Bearing Technology Co.,Ltd.is a professional manufacturer and exporter of excavator slewing rings, its factory is located in HangZhou city, ZheJiang Province,very close to ZheJiang Port, goods can be easily transported all over the world.

Our main product is excavator slewing rings, we can now produce more than 1000 part numbers to match with many famous excavator brands, such as CATERPILLAR,  , HITACHI, KOBELCO, HYUNDAI, VOLVO, DOOSAN, LIEBHERR, DAEWOO, JCB,CASE, SUMITOMO, KATO,etc. 

Our engineers have more than 20 years rich experience in studying excavator slewing rings and we have professional measuring team can go to customers ‘ workplace  to measure the old or broken slewing rings, then to produce the same replacements. We have our own factory with latest CNC machines , such as vertical lathes, gear hobbing machines, gear shaping machines, hole drilling mahines, quenching machines, vertical grinding machines, turning machines,etc. to meet customers’ quick delivery requirements. 

We will adhere to the “quality first, credibility first” business philosophy and continually provide our clients with superior quality products and services. We warmly welcome customers from all over the world to visit us and together to build a better future !

2. Our slewing rings can match with more than 1000 excavator models. 

3. Our excavator part numbers as below:

Volvo Slewing Ring Replacement 
Excavator model number Part number Excavator model number Part number
EC160B EC180B/C/D 14577175 EC210LC   1155-00061
EC160B EC180B/C/D 14577176 EC210LC   14563328
EC160B EC180B/C/D 14563341 EC240BLC   14575267
EC160B EC180B/C/D 14563342 EC240BLC   14563334
EC140 CLM  14563340 EC240BLC   SA1155-00040
EC140B LC    Serial-V20400 EC240BNLC  1452571
EC140CL SA1055-01461 EC290  1457571
EC140CL  VOE1452 0571 EC290BLC   14563335
EC180B LC VOE14520569 EC290B    14563335
EC210    SA1155-00061 EC290B    1452571
EC210BLC     14563343 EX300-3C  9112188
EC210BLC   14647522 EC360BLC   14563350
EC210 2005  EC210V13948  EC390   14647527
EC210B      14563327 EC460BLC   145 0571 9
EC210B  1455716 EC460  14559204
EC210BLC  14577178 EC480DL   14559204
EC210    14647523 EC700BLC  14559205
EC210BNC   14530323    

4. Our excavator slewing ring pictures


5. Our slewing bearing packaging pictures 

6. Transportation way: By sea/ air/ rail/ road/ TNT/DHL/UPS/Fedex,ect. 

7. Contact information

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Feature: Short Delivery Time
Sealing Gland: We Use Seal Rings
Rolling-Element Number: Single Row, Three Row for Huge Slewing Bearing
Roller Type: Four Point Contact
Material: Alloy Steel
Samples:
US$ 1000/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

How does Preload Affect the Performance and Efficiency of Ball Bearings?

Preload is a crucial factor in ball bearing design that significantly impacts the performance, efficiency, and overall behavior of the bearings in various applications. Preload refers to the intentional axial force applied to the bearing’s rolling elements before it is mounted. This force eliminates internal clearance and creates contact between the rolling elements and the raceways. Here’s how preload affects ball bearing performance:

  • Reduction of Internal Clearance:

Applying preload reduces the internal clearance between the rolling elements and the raceways. This eliminates play within the bearing, ensuring that the rolling elements are in constant contact with the raceways. This reduced internal clearance enhances precision and reduces vibrations during operation.

  • Increased Stiffness:

Preloaded bearings are stiffer due to the elimination of internal clearance. This increased stiffness improves the bearing’s ability to handle axial and radial loads with higher accuracy and minimal deflection.

  • Minimized Axial Play:

Preload minimizes or eliminates axial play within the bearing. This is especially important in applications where axial movement needs to be minimized, such as machine tool spindles and precision instruments.

  • Enhanced Rigidity:

The stiffness resulting from preload enhances the bearing’s rigidity, making it less susceptible to deformation under load. This is critical for maintaining precision and accuracy in applications that require minimal deflection.

  • Reduction in Ball Slippage:

Preload reduces the likelihood of ball slippage within the bearing, ensuring consistent contact between the rolling elements and the raceways. This leads to improved efficiency and better load distribution.

  • Improved Running Accuracy:

Preloading enhances the running accuracy of the bearing, ensuring that it maintains precise rotational characteristics even under varying loads and speeds. This is essential for applications requiring high accuracy and repeatability.

  • Optimized Performance at High Speeds:

Preload helps prevent skidding and slipping of the rolling elements during high-speed operation. This ensures that the bearing remains stable, reducing the risk of noise, vibration, and premature wear.

  • Impact on Friction and Heat Generation:

While preload reduces internal clearance and friction, excessive preload can lead to higher friction and increased heat generation. A balance must be struck between optimal preload and minimizing friction-related issues.

  • Application-Specific Considerations:

The appropriate amount of preload depends on the application’s requirements, such as load, speed, accuracy, and operating conditions. Over-preloading can lead to increased stress and premature bearing failure, while under-preloading may result in inadequate rigidity and reduced performance.

Overall, preload plays a critical role in optimizing the performance, accuracy, and efficiency of ball bearings. Engineers must carefully determine the right preload level for their specific applications to achieve the desired performance characteristics and avoid potential issues related to overloading or inadequate rigidity.

ball bearing

What Precautions should be taken to Prevent Contamination of Ball Bearings in Industrial Settings?

Preventing contamination of ball bearings is essential to ensure their proper function, longevity, and overall performance in industrial settings. Contaminants such as dust, dirt, debris, and particles can significantly impact bearing operation. Here are important precautions to take to prevent contamination of ball bearings:

  • Effective Sealing:

Choose ball bearings with appropriate seals or shields to prevent the ingress of contaminants. Seals provide a physical barrier against dust, moisture, and particles, ensuring the bearing’s interior remains clean.

  • Clean Environment:

Maintain a clean working environment around the machinery and equipment. Regularly clean the surrounding areas to prevent the accumulation of dirt and debris that could enter the bearings.

  • Proper Handling:

Handle bearings with clean hands and use gloves if necessary. Avoid touching the bearing surfaces with bare hands, as natural skin oils can transfer contaminants onto the bearing.

  • Clean Tools and Equipment:

Use clean tools and equipment during installation and maintenance to prevent introducing contaminants. Ensure that tools are properly cleaned before coming into contact with the bearing components.

  • Contamination-Controlled Workstations:

Establish contamination-controlled workstations for bearing handling, installation, and maintenance. These areas should have proper ventilation, filtered air, and minimal exposure to external contaminants.

  • Proper Lubrication:

Use the correct lubricant in appropriate quantities. Lubricants help create a barrier against contaminants and reduce friction. Regularly inspect and replenish lubrication to maintain its effectiveness.

  • Regular Inspections:

Implement a routine inspection schedule to monitor the condition of the bearings. Look for signs of contamination, wear, and damage. Address any issues promptly to prevent further damage.

  • Training and Education:

Train personnel on proper handling, installation, and maintenance practices to minimize the risk of contamination. Educated employees are more likely to take precautions and prevent accidental contamination.

  • Environmental Controls:

In sensitive environments, such as clean rooms or medical facilities, implement strict environmental controls to minimize the presence of contaminants that could affect bearing performance.

  • Regular Cleaning and Maintenance:

Perform regular cleaning and maintenance of machinery and equipment to prevent the buildup of contaminants. Keep bearings protected during maintenance to prevent debris from entering during the process.

  • Selection of Suitable Bearings:

Choose bearings that are specifically designed for the application’s environmental conditions. Some bearings have advanced sealing options or specialized coatings that enhance contamination resistance.

By implementing these precautions, industries can significantly reduce the risk of contamination in ball bearings, ensuring smooth operation, extended bearing life, and enhanced equipment reliability.

ball bearing

What are the Different Components that Make up a Typical Ball Bearing?

A typical ball bearing consists of several essential components that work together to reduce friction and support loads. Here are the main components that make up a ball bearing:

  • Outer Ring:

The outer ring is the stationary part of the bearing that provides support and houses the other components. It contains raceways (grooves) that guide the balls’ movement.

  • Inner Ring:

The inner ring is the rotating part of the bearing that attaches to the shaft. It also contains raceways that correspond to those on the outer ring, allowing the balls to roll smoothly.

  • Balls:

The spherical balls are the rolling elements that reduce friction between the inner and outer rings. Their smooth rolling motion enables efficient movement and load distribution.

  • Cage or Retainer:

The cage, also known as the retainer, maintains a consistent spacing between the balls. It prevents the balls from touching each other, reducing friction and preventing jamming.

  • Seals and Shields:

Many ball bearings include seals or shields to protect the internal components from contaminants and retain lubrication. Seals provide better protection against contaminants, while shields offer less resistance to rotation.

  • Lubricant:

Lubrication is essential to reduce friction, wear, and heat generation. Bearings are typically filled with lubricants that ensure smooth movement between the balls and raceways.

  • Flanges and Snap Rings:

In some designs, flanges or snap rings are added to help position and secure the bearing in its housing or on the shaft. Flanges prevent axial movement, while snap rings secure the bearing radially.

  • Raceways:

Raceways are the grooved tracks on the inner and outer rings where the balls roll. The shape and design of the raceways influence the bearing’s load-carrying capacity and performance.

  • Anti-Friction Shield:

In certain high-speed applications, a thin anti-friction shield can be placed between the inner and outer rings to minimize friction and heat generation.

These components work together to enable the smooth rolling motion, load support, and reduced friction that characterize ball bearings. The proper design and assembly of these components ensure the bearing’s optimal performance and longevity in various applications.

China best Ball Slewing Bearing Slewing Ring Bearing Ec210V13948 for Excavator Ec210 2005   manufacturerChina best Ball Slewing Bearing Slewing Ring Bearing Ec210V13948 for Excavator Ec210 2005   manufacturer
editor by CX 2024-05-16

Recent Posts